Science Advances Our Understanding of Headwater Systems

Trim the Tribs Research

Les Stanfield
Ecohealth Solutions

Nottawasaga Inn, November 16th, 2015
Background

“The only effects that matter are cumulative effects”

(Merriam pers. Comm.)
Background: 2000 – 2014

- **Input variables:**
 - Fish (species and community); benthos; temperature; baseflow; peak flows; habitat

- **Built predictive models based on:**
 - Land use
 - Catchment variables (geology, climate, area, etc.)
 - Barriers
 - Instream habitat
 - Biological interactions
Results: Lots of Models
Other Stressors: Fragmentation

- Dendritic Connectivity Index:
 - Mahlum et al. 2014 - Lake Ontario Tribs,
 - Stanfield - Lake Simcoe
 - Edge et al. - TRCA

Conclusion:
Fragmentation reduces resiliency & recolonization
For fish

But is less important than land use
Proximity an Riparian Condition Analysis

• Upland area land use similar predictive power as Riparian areas..... I.e. Headwaters are critical
Headwaters are the missing link
Trim the Tribs1

• Workshop 2013

Questions:
 – Which tribs are most important to ecosystem integrity
 – Which and How many tribs can be “pruned”

• Developed Study Design and proposal

• Funding NSERC 2014

1. Cumulative effects from alteration of headwater drainage features and the loss of ecosystem integrity of river networks: http://www.trca.on.ca/dotAsset/190979.pdf
Cumulative Effects in a Riverscape Across Scales

- John Richardson UBC (lead)
 Lenka Kuglerova,
 Brian Kielstra
 Headwater/forest specialist
 riparian health and processes
 Spatial patterns, nesting, benthics

- Dan Moore - UBC
 Hydrologic changes (processes)

- Jim Buttle – Trent
 Ibrahim Rashid
 Predictive changes in flows
 SWAT predictive modeling

- Antoine Morin (UofO)
 Bernadette Charpentier
 Understanding variance in fish
 and benthos

- Laura Del Giudice (TRCA)
 Les Stanfield
 Integration with Policy
 P.I.A.
Nested Analysis Approach

<table>
<thead>
<tr>
<th>Study Scale</th>
<th>Measurable indicator/protocol</th>
<th>Predictor Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headwater Segment (fishless)</td>
<td>Headwater condition - protocol sediment/flows/connectivity</td>
<td>Segment Condition - GIS measured &/or supplemented with rare features (GWU, etc.)</td>
</tr>
</tbody>
</table>
| Mid-reach Segment | Biological indicators (Fish/benthos) and possible diagnostic indicators (e.g., water quality, substrate etc..) | Weighted condition to a point on the network e.g.,
 \[f(C) = f(A1) + f(A2) + f(A3) + I \]
 \[f = \text{HDF}, C = \text{mainstream}, I = \text{local conditions} \] |
| Watershed | Summary statistic for mainstem (e.g., flows) | Weighted condition to a downstream point on the network (i.e., outlet) |
Understanding Hierarchical Structure HDF Sites

Brian Kielstra
Valued Ecosystem Components

Fish, benthos and others....
Understanding longitudinal Sources of Variance

• Riparian soil biochemistry, more process data
• Expand in 2016

Brian Kielstra, Lenka Kuglerova
Soil and Water Assessment Tool

- WSC-hydata data to validate mainstem
- OSAP headwater & baseflow spot discharges
- Flashiness
- Beta version 😊

Ibrahim Rashid, Jim Buttle
Variances in biota

- Antoine Morin, Élysabeth Théberge, Marie-Ève André
- SMARTER datasets
- benthics & fish
Road Density = 1.25 km/km²
% Intense Ag = 60%
Predicted %EPT deviation = -12.4%
Define Threshold at, say, $\alpha=0.10$ for Fail status
Estimate risk of “Fail” if catchment is developed

(60% intense Ag and Road Density of 1.25 km/km² = -12.4% EPT deviation)
Estimate risk of “Fail” if catchment is developed

- If developed at this intensity the risk of Fail would be 49.9%
Current Work:

- Expanding analysis to the rest of southern Ontario
- Testing multiple metrics
- Better understand temporal and spatial variability influence on measures of states
Linkages and Partnerships

• Bruce McVicar et al (UofW)
 – understanding sediment transport in urban systems in a changing climate

• Andrea Kirkwood, Brian Kilstra
 – Understanding decomposition processes

• Don Jackson, Chris Edge, Marie Jose-Fortin, Cindy Chu, et al.,
 – Fish assemblage and climate change
Next Steps: Implementation

• Preliminary analysis of spatial patterns
 – Part of gap analysis
• Continue to analyze indicators (VECs)
• Field Work 2016
• Build the integrated models that
 – Incorporate scale effects
 – Processes (e.g., hydrology, sediment transport
 – Support with process based research
Final Vision

- Build/enhance a Decision Support System
- Incorporate LID & wetland restoration
- Incorporate Ecohealth metrics
- Implement within municipally based user pays software
Thank you

Contact me at
Les.Stanfield@outlook.com

Check out:
Headwater papers

Modeling papers at:
http://www.trca.on.ca/the-living-city/monitoring/southern-ontario-stream-monitoring-research-team.dot